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COMMENT 

Continued fractions and the potential models of 
confinement-reply to a comment 

M Znojil 

Nuclear Physics Institute, Czechoslovak Academy of Sciences, 250 68 Rei ,  Czecho- 
slovakia 

Received 7 December 1981, in final form 10 August 1982 

Abstract. The analytic continued-fractional formula for energies of the bound states in 
the harmonium potential V ( r )  = a + br + cr’, as suggested by Singh et a( and criticised 
by Flessas, is correct if and only if b > 0. This is the special case of the more general 
result. We extend here the analytic construction of the Green function and the rigorous 
specification of its validity to the whole class of potentials with r2Vir)  =polynomial in r e ,  
a =positive rational number. 

1. Introduction 

In a recent letter (1982, referred to as ‘Comments’ in what follows), George Flessas 
considers the harmonium potential 

(1) 
and claims that the analytic representation of the related binding energies E by Datta 
and Mukherjee (1980) is ‘based on a .  . . mathematically meaningless relation’ 
(equation (12) of ‘Comments’). We disagree with such a statement. The main purpose 
of the present paper is to clarify the essence of the method and to show that Datta 
and Mukherjee’s basic relation is in fact related directly to the asymptotic behaviour 
of the wavefunctions and, when complemented by the ‘applicability condition’ 

~ ( r )  = gr-* + ar-’ + b r  + cr2 ,  c >o,  

b > O ,  (2) 
it gives indeed the complete spectrum of the physical bound-state energies. Moreover, 
we intend to show that equation (1) is just a special case of the fractionally anharmonic 
oscillator potentials 

I 
V ( r )  = 1 girah, 

ai = rational, ai 3 - 2 ,  lim,_.o r ~ ( r )  >-a, I <CO, limr-,m V ( r )  > -CO, 

i = l  

2 (3 1 

all of which admit the similar and compact construction of the Green function G ( E )  
in terms of the so-called ‘extended’ (Znojil 1976, 1983) and convergent continued 
fractions. Again, an adequate generalisation of the ‘applicability’ condition (2) (see 
equation (23) below) must be satisfied. 

The material is organised as follows. In the preparatory 02 we reduce the general 
non-relativistic power-law confinement problem to its canonical form and characterise 
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2 14 M Znojil 

any force (3) by the integers p (‘fractionality’), q (‘anharmonicity’) and t (‘subharmonic- 
ity’)--equation (1) i- (2) corresponds to p = 1, 4 = 1 and t = 2. All the potentials with 
the same q may be considered equivalent from the formal point of view. 

In § 3, we consider any 4 5 1 and transform the canonical differential Schrodinger 
equation to the algebraic recurrences by the standard power-series method. In a 
constructive way we show that this linear system of equations for the expansion (Taylor) 
coefficients admits the various ‘non-Hill-determinant’ interpretations of the eigenvalue 
problem, the ‘Hill-determinant’ formalism being only the one specified by the simplest 
choice of an auxiliary sequence Fk. For q = 1 in particular, this formulation enables 
us to simplify our earlier proof (Znojil 1982) of the correct asymptotic behaviour of 
the q = 1 wavefunctions in the harmonium potential (1) + (2). In § 4 we show how 
this result may be extended to cover all q but defer the rather complicated details to 
a separate publication (Znojil 1983). 

2. Classification of the power-law potentials 

Let us consider first the Coulomb-type forces (3) in the Schrodinger equation 

[-d2/dr2+f(1+ l ) / r 2 +  V ( r ) ] Q ( r )  =Eq?(r), l = O ,  1, * .  . , (4) 
i.e. assume that V ( a )  = 0 and max a, < O ,  i = 1, 2, . . . ,I, in (3).  We restrict our 
attention to the discrete spectrum only, E CO, and put a,  = -2n,/M, where n ,  are 
integers, 0 < n, s M,  and M is the corresponding minimal common denominator. Next, 
we put p = M x T = 2 q + 2  ( T = l  for M = e v e n  and T = 2  for M = o d d ) ,  introduce 
the new variables in (4) (cf Quigg and Rosner 1979) 

x ( x )  ( 5 )  r =xp,  q ? ( r )  = r ( 1 - l / P ) / 2  

and get the new form of the Schrodinger equation 

[-d2/dx + L ( L  + l ) / ~  + W ( X  )Ix (X = E X  (XI (6 )  
with the particular (canonical, even) ‘polynomially anharmonic’ type of potential (3) 

2qi-1 

] = I  
W ( x ) =  1 G,x2’, (7) 

2 Gp-l = -p2E, G ~ - I - ~ , T = P  g,, i = 1 , 2  , . . . ,  I, 
and with the ‘modified’ angular momenta L 

( L + f y  = p 2 ( I  +$)2+p2g,,, n,, = M (8) 
and reinterpreted couplings ( E  + Gp-1, Go + ‘new’ energy E = -Go). 

Let us now remove the restriction max a ,  CO. Provided that some of the n, are 
negative, min n, = -NI < 0, and that gr > 0, i.e. V ( W )  = +coo, the whole energy spectrum 
becomes discrete (also in equation (6) where GZq+1 = p2gI > 0 and 4 > (p - 2)/2). 

Since the transformation (5) is sufficiently smooth, it preserves the character 
(regularity in the origin and asymptotic behaviour) of the solutions. Hence, we need 
not distinguish between different p for the same q-the potentials with p s 2q + 2 are 
all equivalent. Thus, any power-law potential (3) may be classified by the pair of 
integers q (degree of the polynomial W ( x )  or ‘anharmonicity’) and p (exponent in (5) 
or ‘fractionality’ of V). For irrational a in (3), we may put p = q  =a. For the 
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superpositions of powers we may introduce also another auxiliary parameter t 2 0 
such that 

(9) 

This ieflects the asymptotic behaviour of the Coulomb-type V (p = 2q +2)  and will 
prove to be useful also for p < 24 + 2-see below. 

A small sample of the ‘simplest’ potentials is displayed in table 1. Let us notice 
that the harmonium potential (1) (with q = 1 and p = 2) appears to be equivalent to 
the sextic anharmonic oscillator (q = p  = 1). In connection with the point (i) of 
‘Comments’, we may therefore recall the q = 1 results of Singh et a1 (1978, cf also 
1979) and Znojil (1982) giving both the compact solution to equation (6) and a 
rigorous foundation of the ‘Hill-determinant’ eigenvalue method. 

G 2 q - r  + 0,  G 2 q - r + 1  = . . . = GZq = 0. 

Table 1. The simplest fractionally anharmonic potentials. 

4 P  Potential (a > -1/4) Comment 

0 1  
2 

1 1  
2 
3 
4 

2 1  
2 
3 
4 
5 
6 

a r - 2 + c r 2  
ar-2 + br-‘ 
a r i 2 + c r 2 + d r 4 + e r 6  
arF2 + br-’ + dr + er2  

ar-2 + br-3‘2 + cr-’ + dr-’I2 
. . . + e r 6 + f r a + g r ‘ o  
. . . + e r 2 + f r 3 + g r 4  
. . . + er2i3 + f r 4 i 3  + g r 2  
. . . + f r ” 2 + g r  
. . . + 
. , ,+er-2 i3+fr-1 i3  

a r - 2 + b r - 4 / 3 + c r - 2 / 3  i er2i3  

+ gr2’5 

3. Recurrence relations 

In accord with the standard textbooks and recent results (Znojil 1981) we may easily 
verify that an ansatz 

inserted into (6) leads to the (q + 2)- term recurrences 

1 1 1  1 Ql,h, = O ,  i = 1 , 2 , .  . . , 
i = m a x ( l . i  -q i  
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where 

Q;,,I = B; = -4 jG + L + 1/2), 

k =0 ,  1 , .  . . , q ,  j = 1 , 2 , .  . .. 

Proposition 1. Equation (11) is not an eigenvalue problem. 

Proof. Choosing a normalisation h l  = 1, we obtain the non-trivial solution to (11) 

(cf also Znojil 1981) for each energy E or E .  

Proposition 2. We may rewrite recurrences (11) in the shortened (q + 1)-term form. 

Proof. When we introduce the various sequences Fk, k = 1,2,  . . . defined from arbitrary 
initialisations by the recurrence 

j - 1  

Fk = -I/( CiP’ + 2 Cf i j  n B k + m F k + m + l  
1 = 1  m=O 

the purely algebraic manipulations give from (1 1) (with w = h l / F 1 )  

U ( m + l )  u?jk = c inmi )k  + B m + k F m + k + l  m + k + l ,  

Obviously, the requirement wk = 0 is equivalent to the particular though fully admis- 
sible choice of 

m =q ,q -1 , .  . , , 1, k = 1,2, .  . .. 

l / F l = O .  (15) 

Let us now choose 4 = 1 and return to ‘Comments’. Since the method of Singh et 
a1 (1978) and of Datta and Mukherjee (1980) is based on equation (15) (i.e. equation 
(12) of ‘Comments’), it specifies uniquely the physical sequences F2, F 3 , .  . . and hZ 
h 3 , .  . . (cf (13) and (14), respectively). In this ‘reverted’ formulation, the energies 
must be determined independently, from the physical boundary conditions imposed 
on the wavefunctions (cf also point (ii) of ‘Comments’). We may formulate the 
corresponding result as follows. 

Proposition 3. For the q = 1 potential (1)+(2) ,  all physical binding energies may be 
formally defined by the condition 

Fkc;” < 0, k > k o ,  (16) 
in the limit k o +  CO. 
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Proof, For k >> 1 and b >0, the mappings Fk +Fk+l and Fk+l+Fk have positive and 
negative points of accumulation, respectively. This follows from figure 1 with x = 
FkC(kt) and y =Fk+lCL1il and from the inequalities 

I 

Figure 1. Mappingpf the ratio h k / h k - l  = x  onto y = h k + l / h k  with q = 1, b >o, k >>I, 
yio,= pt/k = b/2kJc>O and YH = * W k  + Y ~ ( o J ” ~  + y(or  = x , + ) .  

As a consequence, the n dependence of Fz,Cifl or FZn+lCkln)+l may be characterised 
by a smooth interpolation curve of the type displayed in figure 2.  Hence (in accord 
with equation (17) of ‘Comments’ and Stirling’s formula), the q = 1 wavefunction 
regular in the origin behaves in the asymptotic region as a superposition of the two 
increasing exponentials given by the two separate summations over the even and odd 
indices n in (10). For almost all energies, these two exponentials cannot cancel because 
of the positivity of their relative sign, 

hklhk-1 =FkCL1’ -x(+j>o, k >>1, (18) 

cf the counterexample (iv) in ‘Comments’. Vice versa, the two exponentials may cancel 
and meet the physical asymptotic requirements provided that the forward-running 
recurrence Fk+Fk+l becomes unstable. This is reflected by equation (16). In the 
light of the oscillation theorem (sgn cp (x )  = *sgn AI3 whenever x >> 1 is sufficiently 
large and A E  = E - Ephys f 0 is sufficiently small), we may conclude that no physical 
energy will be lost. 

Obviously the numerical use of equation (16) will be hindered by the loss of 
precision. Nevertheless, the stable algorithm may be obtained simply by a reinterpreta- 
tion of the whole construction. 
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t 

Figure 2. Behaviour of the sequences h / h k - ,  with the fixed parity of k in the k >>l 
asymptotic region (q = 1). 

Proposition 4. For q = 1,  let us pick up an arbitrary initialisation FN = a E (-00, CO) of 
the sequence Fk = FLNSa). Then equation ( 1 5 )  (~ /FI" ' " '  = 0)  gives the physical spec- 
trum in the limit N + CO if and only if the condition (2)  is satisfied. 

Proof. This is a simplification of that given elsewhere (Znojil 1982). For each physical 
energy (but b > 0 only), the sequence of the backward-generated FiN*''', k << N, almost 
(or exactly, for N = CO) coincides with the physical Fk. This follows from equation 
(16) and figure 2 where y(-, becomes a point of accumulation. For the smaller k, this 
coincidence survives if and only if the energies are physical-otherwise, we would get 
a contradiction with proposition 3. 

4. Binding energies 

From the asymptotic form of the differential Schrodinger equation, we obtain that 
~ ( x )  - exp[ +f(x)] for E f Ephys so that dx/df -,y for f >> 1. Inserting this estimate 
into equation (lo), we get, rather formally, 

with the new expansion coefficients b. With any q 2 1, this enables us to generalise 
proposition 3 and to decompose the wavefunction into the q + 1 asymptotically growing 
exponentials cancelling at the physical energies. 
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Proposition 5 .  If the values F k  lie close to a negative fixed point of the mappings 
FkCi + Fk, i = 1, 2, . . . , q, for all k >> 1, then equation (15) defines the binding energies. 

Proof. When we ignore the O ( l / k )  corrections in the k >> 1 asymptotic region, the 
recurrences (13) with Lk =Bt-lFk acquire a simple form 

Ln=n / (P i+@zLn+i+*  a *+Sq+lLn+lLn+2 * * *Ln+q) (20) 

possessing only one or two common real fixed points P k (  = Lk = . . . = L k + q  in (20)), 

P n  - E  (n/Pq+dP, n >>1, E = * l ,  (21) 

for q =even or odd, respectively. Since B, = -4n2(1 + O(l /n ) )  and C‘,“ =4npi+l, 
i = 0, 1, . . . , q, the insertion of (19) and L, - Pn into (14) gives 

f E’bn+i = (constant (n) /F1)( l+O(l /n)’) ,  E = sgn P,. (22) 
j=O 

With E = +1, this implies that near a root EO of l/F1, the superposition of the q + 1 b’s  
changes sign. The asymptotic n-dependence of b(q+l )n+j ,  j = 0,  1, . . . , q, becomes 
fairly smooth, in full analogy with the q = 1 example of § 3. For sufficiently large n ,  
the change of sign of the superposition of the q + 1 neighbouring b’s  corresponds 
therefore to the change of sign of the q + 1 partial summations over n =constant (mod 
q + 1 )  in equation ( lo) ,  i.e. to the change of sign of ~ ( x )  in the asymptotic region. 
Now, similarly to the oscillation-theorem argument of proposition 3, the latter change 
of sign (mutual cancellation of the growing exponentials in ~ ( x ) )  specifies precisely 
the complete spectrum of the binding energies. In the light of equation (22), it occurs 
if and only if the transcendental equation (15) is satisfied. Due to the strength of the 
assumptions, no restriction similar to equation (2) is needed. 

In a way similar to proposition 4 it is possible to satisfy the assumptions of 
proposition 5 by starting the recurrences (13) in infinity. Deferring the detailed 
discussion of the rather complicated technical questions to Znojil (1983), let us 
formulate this possibility as the final 

Conjecture. When we consider the particular subclass of the potentials W ( x )  in 
equation (6) with 

G2q-t > O ,  G2q-t+l = . . . = GZq = 0, O s t < q ,  (23) 

and introduce the ‘extended continued fractions’ FimSo) = limN.+mfkNpO’ defined by the 
recurrences (13) and initialisation FrZJ = 0, i = 1,2, . . . , q, then the physical binding 
energies become roots of the transcendental equation 

l / F \ ” . O ’  = 0. (24) 

Concerning the proof, it is probably rather complicated-its q = 2 version was 
given by Znojil (1981) for a particular type of W. The proof of a weaker version of 
the conjecture will be given elsewhere (Znojil1983). The q 2 1 ‘applicability condition’ 
(23) coincides with equation (2) at q = 1 and seems to be a restriction immanent in the 
present continued-fractional formalism and not easily removable without a use of the 
forward-running recurrences. 
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5. Summary 

Although our arguments concern the general potential (3) rather than its special case 
(1) only, we may parallel 'Comments', with the same numbering of topics, showing 
the following. 

(i) The q = 1 'consistency condition' of Datta and Mukherjee (1980) represents a 
correct eigenvalue method if and only if equation ( 2 )  holds. Its generalisation to q > 1 
is possible and it has been described here in detail, omitting only some of the more 
extensive proofs. 

(ii) The correct physical asymptotic behaviour of the wavefunctions is guaranteed 
by the formalism since the wavefunction may be written as a superposition of q + 1 
growing exponentials which do not cancel off the physical energy. 

(iii) The formalism gives the terminating solutions as special cases, of course. 
(iv) The counterexamples of 'Comments' are correct but violate either the applica- 

bility condition ( 2 )  or correspond simply to E # Ephys. 
(v) We may summarise that for b > O  (or equation (23) in general), the Green 

function F\"30' represents an analytic resummation of the perturbation series and its 
singularities define the complete discrete spectrum. As a continued-fractional 
algorithm, this may be used even in the numerical computations after some amend- 
ments (Znojil 1981), contrary to the original expectations of Singh et a1 (1978). 
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